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Abstract: In order to better locate the altitudeof the vehicle in complex situations such as the urban 
environment, a high-precision and high-reliability altitude measurement algorithm is proposed. The 
altitudemeasurement is carried out by using three sensors: global positioning system, barometric 
altimeter and inertial measurement unit. The principle and model are analyzed. The state equation 
and measurement equation of the altitude measurement system are established according to the 
kinematics and sensor measurement model. The estimateof altitude is obtained by Kalman filter 
method. The high-information fusion method based on adaptive Kalman filter is studied and the 
experiment of altitude measurement system is carried out. The experimental results show that the 
system is designed reasonably and the altitudemeasurement has high precision. 

1. Introduction 
With the development of economy and the rapid growth of vehicles, more and more urban 

viaducts and parking lots are also being built up. At present, GPS/INS integrated navigation system 
is widely used. The inertial navigation system has high relative accuracy, good autonomy, high 
real-time navigation data update rate, and can continuously provide carrier motion parameters. 
However, its navigation positioning error increases with time, making it difficult to work 
independently for a long time [1]. Global positioning system features high positioning and speed 
measurement, high-precision speed and position information in all weather, continuous real-time, 
error does not accumulate over time, and the price is cheap. However, its real-time navigation update 
rate is poor, and when the vehicle is traveling in complex environment, the GPS satellite positioning 
effect is poor [2]. Combining INS and GPS can effectively utilize the advantages of INS and GPS, 
and complement each other. This combination can effectively reduce system errors, greatly improve 
navigation accuracy and reliability, and reduce navigation system cost [3]. However, in the altitude 
channel, the GPS positioning error will reach 10 meters or more, and the positioning error is greater 
in complex urban environments. The pure inertial altitude channel is unstable [4], so the pure inertia 
altitude channel cannot be directly used, and the external altitude information must be introduced to 
form a damping circuit for the altitude channel. Therefore, this paper proposes a multi-sensor vehicle 
altitude positioning system. Based on the original GPS/INS integrated navigation system, adding a 
barometer altitude measurement system and integrating altitude information of three sensors based 
on information fusion algorithm can obtain a low-cost, high-accuracy and reliability altitude 
measurement system. 

2. The MeasuringModel 
2.1 The Measuringmodel of GPS 

ℎ𝐺𝐺𝐺𝐺𝐺𝐺 = ℎ + 𝜔𝜔1        (1) 

Where ℎ𝐺𝐺𝐺𝐺𝐺𝐺 is the is the measurement altitude of GPS, ℎ is the true altitude of the vehicle, and 
𝜔𝜔1 is the measurement noise of GPS. 
2.2 The measuringmodel of the barometer altimeter 

Due to the influence of the gravity, the atmospheric pressure decreases with the altitude increasing. 
Therefore, the relationship between atmospheric pressure and altitude can be used to obtain the 

2019 2nd International Conference on Mechanical, Electronic and Engineering Technology (MEET 2019)

Published by CSP © 2019 the Authors 394



current altitude value through the calculation of the barometric pressure value[5]. The formula is as 
follows: 

𝐻𝐻 = 𝑇𝑇𝑏𝑏
𝛽𝛽
��𝑃𝑃𝐻𝐻

𝑃𝑃𝑏𝑏
�
−𝛽𝛽𝛽𝛽/𝑔𝑔𝑛𝑛

− 1� + 𝐻𝐻𝑏𝑏        (2) 

Where Hb and Tb are the lower limit of the gravitational potential altitude and atmospheric 
temperature of the corresponding atmosphere, β is the vertical rate of change of temperature, gn is 
the standard free fall acceleration, Pb  is the lower limit of atmospheric pressure of the 
corresponding atmosphere, PH is atmospheric pressure of the altitude,R is the air-specific gas 
constant. 

Then the altitude measurement equation is as follows: 

𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℎ + 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                           (3) 

Where 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the measuring altitude of the barometer, ℎ is the true altitude of the vehicle, 
𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the barometric altitude noise. Since the barometer has big noise, the differential data of the 
barometer altitude measured in the adjacent time interval can be used as the altitude rate to reduce 
the influence of the noise. That is, the mathematical model of the altitude rate of the barometer is: 

𝑉𝑉 = 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘2−𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘1

𝑑𝑑𝑑𝑑
+ 𝜔𝜔2(4) 

Where𝑉𝑉 is the true altitude rate, 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘1 is the measuring altitude of the barometer at time 𝑘𝑘1, 
𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘2 is the measuring altitude of the barometer at time 𝑘𝑘2, and 𝑑𝑑𝑑𝑑 is the time interval between 
𝑘𝑘1 and 𝑘𝑘2,𝜔𝜔2 is the measurement noise of the barometer. 

2.3 The Measuringmodel of INS 

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎 + 𝜔𝜔3          (5) 

Where 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 is the vertical acceleration value measured by the strapdown inertial navigation, 𝑎𝑎 
is the true vertical acceleration value, 𝜔𝜔3 is the measured white noise, and the variance is 𝜎𝜎𝑔𝑔2. 

The measured value 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 is calculated from the output of the strapdown inertial navigation 
system: 

𝑎𝑎 = −𝑎𝑎𝑥𝑥 sin𝜃𝜃 + 𝑎𝑎𝑦𝑦 cos 𝜃𝜃 sin𝜙𝜙 + 𝑎𝑎𝑧𝑧 cos 𝜃𝜃 cos𝜙𝜙        (6) 

Where 𝑎𝑎𝑥𝑥、𝑎𝑎𝑦𝑦、𝑎𝑎𝑧𝑧 are accelerations along the three axes of the vehicle, 𝜃𝜃 is the pitch angle, 
and 𝜙𝜙 is the roll angle. 

It is assumed that the direct measurement value and the attitude angle measurement value of the 
acceleration obey the Gaussian distribution which is expected to be a true value, and the variances 
are 𝜎𝜎𝜃𝜃2 and 𝜎𝜎𝑎𝑎2, and are independent of each other. Then: 

 𝐸𝐸(𝑎𝑎) = 𝐸𝐸�−(𝑎𝑎𝑟𝑟𝑟𝑟 + 𝑎𝑎�𝑥𝑥) sin�𝜃𝜃𝑟𝑟 + 𝜃𝜃�� + �𝑎𝑎𝑟𝑟𝑟𝑟 + 𝑎𝑎�𝑦𝑦� cos�𝜃𝜃𝑟𝑟 + 𝜃𝜃�� sin�𝜙𝜙𝑟𝑟 + 𝜙𝜙�� + (𝑎𝑎𝑟𝑟𝑟𝑟 +
𝑎𝑎�𝑧𝑧) cos�𝜃𝜃𝑟𝑟 + 𝜃𝜃�� cos�𝜙𝜙𝑟𝑟 + 𝜙𝜙��� 

= −𝐸𝐸 cos�𝜃𝜃�� 𝑎𝑎𝑟𝑟𝑟𝑟 sin(𝜃𝜃𝑟𝑟) + 𝐸𝐸 cos�𝜃𝜃��𝐸𝐸 cos�𝜙𝜙�� ⋅ �𝑎𝑎𝑟𝑟𝑟𝑟 cos(𝜃𝜃𝑟𝑟) sin𝜙𝜙𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑟𝑟 cos(𝜃𝜃𝑟𝑟) cos𝜙𝜙𝑟𝑟� 

= −𝑒𝑒−
𝜎𝜎𝜃𝜃
2

2 𝑎𝑎𝑥𝑥 sin(𝜃𝜃) + 𝑒𝑒
𝜎𝜎𝜃𝜃
2

2 𝑒𝑒−
𝜎𝜎𝜃𝜃
2

2 (𝑎𝑎𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝑟𝑟 sin𝜙𝜙𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑟𝑟 cos𝜃𝜃𝑟𝑟 cos𝜙𝜙𝑟𝑟)    (7) 

It can be seen that the vertical acceleration obtained in this way is a biased quantity. If the 
accelerometer is changed to equation, the calculated vertical acceleration can be regarded as an 
unbiased measurement: 

𝑎𝑎 = −𝑒𝑒−
𝜎𝜎𝜃𝜃
2

2 𝑎𝑎𝑥𝑥 sin(𝜃𝜃) + 𝑒𝑒
𝜎𝜎𝜃𝜃
2

2 𝑒𝑒−
𝜎𝜎𝜃𝜃
2

2 (𝑎𝑎𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝑟𝑟 sin𝜙𝜙𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑟𝑟 cos𝜃𝜃𝑟𝑟 cos𝜙𝜙𝑟𝑟)        (8) 
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3. Adaptive Kalman Filter Data Fusion Algorithm  
3.1 Establishment of system model  

Take the state variable of the system: 

𝑋𝑋 = [ℎ𝑣𝑣𝑣𝑣]𝑇𝑇                               (9) 

Where ℎ is the altitude, 𝑣𝑣 is the altitude rate, and 𝑎𝑎 is the vertical acceleration. 
According to the above state variables, the state equation is: 

𝑋̇𝑋(𝑡𝑡) =  F(t)X(t) + W(t) = �
ℎ̇
𝑣̇𝑣
𝑎̇𝑎
� = �
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� �
ℎ
𝑣𝑣
𝑎𝑎
� + �

0
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1
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The measurement equation is: 

�
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3.2 Kalman filter discretization  
The state equations and the measurement equations of the Kalman filter algorithm are continuous 

equations, which must be linearized and discretized before they can be calculated online[6]. That is, 
the discrete extended Kalman filter equation for nonlinear systems needs to be designed. 

The continuous Kalman filter state space equation is as follows: 

Ẋ(t) = F(t)X(t) + W(t)                              (12) 

𝑍𝑍(t) = H(t)X(t) + V(t)                              (13) 

X(t) and 𝑍𝑍(t) are the system states and measured values at time t respectively, and F(t) and 
H(t) represent the system state transition matrix and measurement matrix respectively, W(t) and 
V(t) are the system noise and measurement noise respectively. 

Discretization[7] is the process of discretizing the state transition matrix F(t) of the continuous 
system and the system noise variance matrix Q(t) into the state transition matrix Φ𝑘𝑘|𝑘𝑘−1 and the 
system noise variance matrix Q𝑘𝑘. 

The discretization of thestate transition matrix F(t) is as follows: 

Φ𝑘𝑘|𝑘𝑘−1 = ∑ ∆𝑡𝑡𝑛𝑛

𝑛𝑛!
+∞
𝑛𝑛=1 𝐹𝐹(t𝑘𝑘−1)𝑛𝑛 = 𝐼𝐼 + 𝐹𝐹(t𝑘𝑘−1) ∙ ∆𝑡𝑡 + ∆𝑡𝑡2

2!
𝐹𝐹(t𝑘𝑘−1)2 + ∆𝑡𝑡3

3!
𝐹𝐹(t𝑘𝑘−1)3 + ⋯ (14) 

The discretization of the system noise variance matrix Q(t) is as follows: 

Q𝑘𝑘 = ∑ ∆𝑡𝑡𝑛𝑛

𝑛𝑛!
+∞
𝑛𝑛=1 ∙ 𝑀𝑀𝑛𝑛 = 𝑀𝑀1 ∙ ∆𝑡𝑡 + ∆𝑡𝑡2

2!
𝑀𝑀2 + ∆𝑡𝑡3

3!
𝑀𝑀3 + ⋯     (15) 

𝑀𝑀𝑖𝑖+1 = 𝐹𝐹(t𝑘𝑘−1)𝑀𝑀𝑖𝑖 + (𝐹𝐹(t𝑘𝑘−1)𝑀𝑀𝑖𝑖)𝑇𝑇𝑖𝑖 = 1,2,3⋯(16) 

𝑀𝑀1 = Q(t𝑘𝑘−1)                            (17) 
The basic equations for discrete Kalman filtering are as follows: 
State one step prediction equation: 

X�𝑘𝑘|𝑘𝑘−1 = Φ𝑘𝑘|𝑘𝑘−1X�𝑘𝑘−1                      (18) 

Where X�𝑘𝑘−1 is the system state estimation value at time t𝑘𝑘−1, and X�𝑘𝑘|𝑘𝑘−1 is the system state 
prediction value at time t𝑘𝑘. 

State estimation equation: 

X�𝑘𝑘 = X�𝑘𝑘|𝑘𝑘−1 + K𝑘𝑘(Z𝑘𝑘 − H𝑘𝑘X�𝑘𝑘|𝑘𝑘−1) (19) 

Filter gain equation: 
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K𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1 + H𝑘𝑘
𝑇𝑇[H𝑘𝑘P𝑘𝑘|𝑘𝑘−1H𝑘𝑘

𝑇𝑇 + R𝑘𝑘] (20) 

One-step prediction of mean square error: 

𝑃𝑃𝑘𝑘|𝑘𝑘−1 = Φ𝑘𝑘|𝑘𝑘−1𝑃𝑃𝑘𝑘−1Φ𝑘𝑘|𝑘𝑘−1
𝑇𝑇 + Γ𝑘𝑘|𝑘𝑘−1𝑄𝑄𝑘𝑘Γ𝑘𝑘|𝑘𝑘−1

𝑇𝑇 (21) 

Estimated mean square error: 

𝑃𝑃𝑘𝑘 = [𝐼𝐼 − K𝑘𝑘H𝑘𝑘]𝑃𝑃𝑘𝑘|𝑘𝑘−1[𝐼𝐼 − K𝑘𝑘H𝑘𝑘]𝑇𝑇 + K𝑘𝑘𝑅𝑅𝑘𝑘−1K𝑘𝑘
𝑇𝑇(22) 

Kalman filter is a linear recursive algorithm. It is necessary to first determine the initial values X�0 
and 𝑃𝑃0 to calculate the measured value and state estimation value at the next moment. The Kalman 
filtering process is divided into a time update process and a measurement update process. Its 
recursive process is shown in Figure 1. 

Initial estimates for 

(1)Compute the Kalman gain
( 2 ) U p d a t e  e s t i m a t e  w i t h 
measurement
(3)Update the error covariance

(1)Project the state ahead
(2)Project the error covariance 
ahead

Time Update(“Predict”)
Measurement 

Update(“Correct”)

 
Figure 1 Recursive process of discrete Kalman filter 

3.3 Sage-Husa adaptive Kalman filter 
In the practical application of vehicle integrated navigation, due to the complexity of the actual 

environment, it is not a linear time-invariant system, and the statistical characteristics of system noise 
and measurement noise are not known a priori. In this case, ordinary Kalman filter cannot get high 
filtering accuracy and stability. The Sage-Husa adaptive Kalman filter[8] uses the information brought 
by the observations to not only adaptively adjust and update the prior information (estimation state 
variables) in the recursive process, but also to estimate the system noise and measurement noise in 
real time online. 

Generally, the system noise has some stability. The measure to prevent the filter divergence is to 
pay attention to the status of the recent measurement value in the current filtering. Therefore, special 
attention should be paid to the change of the measurement noise. In order to weaken the role of the 
old measurement data in the estimation, the new measurement data play a major role in the 
estimation. The fading memory index weighting method is used to increase the weighting coefficient 
of the new data items. The estimation equation R𝑘𝑘  and the weighting coefficient d𝑘𝑘  of the 
measurement noise variance obtained by weighting coefficients are used as formulas, and the 
estimation equation R𝑘𝑘 and the weighting coefficient d𝑘𝑘 of the measurement noise variance are 
combined with the general Kalman filter equation. The simplified Sage-Husa adaptive Kalman filter 
algorithm can be obtained as follows: 

Suppose r𝑘𝑘 = 0, q𝑘𝑘 = 0, Q𝑘𝑘 is constant, R𝑘𝑘 is unknown:  

v𝑘𝑘 = Z𝑘𝑘 − H𝑘𝑘X�𝑘𝑘|𝑘𝑘−1(23) 

R𝑘𝑘 = (1 − d𝑘𝑘)R𝑘𝑘−1 − d𝑘𝑘(v𝑘𝑘v𝑘𝑘𝑇𝑇 − H𝑘𝑘P𝑘𝑘|𝑘𝑘−1H𝑘𝑘
𝑇𝑇) (24) 

d𝑘𝑘 = (1 − 𝑏𝑏)/(1 − 𝑏𝑏𝑘𝑘) (25) 
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𝑏𝑏 is a forgetting factor and is selected by HDOP of GPS: 

𝑏𝑏 =

⎩
⎪
⎨

⎪
⎧

0.99                𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 2
2

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
     2 < 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 < 5

1
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

5 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 < 10
1

2𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≥ 10

(26) 

4. Experiment 
The data was collected in a GPS/INS vehicle integrated navigation experiment in Shanghai, and 

the sports time was about 50 minutes. The IMU sampling frequency is 50HZ, the GPS sampling 
frequency is 5HZ, the barometric altimeter sampling frequency is 50HZ, and the combined 
frequency is 5HZ. 

The figure 2 below shows the result of the experiment.The red curve is the altitudeoutput of the 
altitude measurement systembased on Sage-Husa adaptive Kalman filter. The blue curve is the 
altitudeoutput of the GPS. And The yellow curve is the altitudeoutput of the dual antenna 
receiver.We use the output of the dual antenna receiver as a reference.It can be seen from the figure 
that the system designed in this paper effectively improves the positioning accuracy of the vehicle 
height measured under a single GPS, and in most cases can accurately locate, the maximum error 
does not exceed 2 meters.Figure 3 shows the HDOP of the GPS, which show the precision of the 
GPS. 

 
Figure 2 The result of the experiment 

 
Figure 3 The HDOP of the GPS 

5. Conclusion 
This paper proposes a Sage-Husaadaptive Kalman filter algorithm. Based on the traditional 

GPS/INS integrated navigation, adding a barometer altitude measurement system,and thedata of the 
three sensors is fused and estimated by adaptive Kalman filtering, which can obtain a low-cost, 
high-accuracy and reliability altitude. It is verified by experiments that the accuracy of the altitude 
measurement system can reach less than 2 meters, which have a certain commercial value. 
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